1

GROUPS OF NONLINEAR CONGRUENCES AND GEODESIC LINES ON THE
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Abstract. A family of nonlinear transformation groups of Hermitian matrices preserving the basic linear
congruences properties is constructed. Each group generates a structure of a partially ordered vector
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e M, stands for the set of all Hermitian nxn matrices with complex entries.
o P, stands for the subset of all positive semidefinite nxn matrices.

o P, stands for the subset of all positive definite nxn matrices.

e GL(n,C) stands for the group of all invertible nxn matrices with respect to the ordinary
multiplication of matrices.

e SL(n,C) stands for the group of nxn matrices with a unit determinant.

e U(n) stands for the group of unitary nxn matrices.

e SU(n) stands for the group of unitary nxn matrices with a unit determinant.

1 Introduction

Invariance and causality are fundamental principles of physics. Coordinate transformations
play an important role, if they preserve some notion of positivity. This explains a special interest
of mathematicians and physicists in a partially ordered set of positive definite matrices. The
congruence transformation X'=Q-X-Q", where QeGL(n,C) and Q® is Hermitian conjugate

matrix, is the linear transformation of H,. The congruences preserve positive definiteness and

the standard partial order relation X <Y (in the sense of quadratic forms). Riemannian metrics
on the set of positive definite matrices and automorphisms of corresponding structures are
intensively studied (see [1]-[4], [13, chapter 6]).

In this article we introduce the simplest nonlinear transformations of H, . These
transformations preserve the ordinary congruence basic properties. The nonlinear congruent
transformations define the structure of so-called ordered vector multispace on H,. They are

order automorphisms for this structure. In addition, these transformations define an invariant
scalar function on a pair of positive definite matrices (an analogue of the point-dependent
indefinite metric). The triangle inverse inequality is performed on the causally connected point
triple. If a pair of points is causally connected, then there is a structure of a vector space on H,
such that the equation of geodesic (of maximum “length”) is a linear equation. The geodesic line
point determines the addition operation choice in its equation. It’s addition operation is the
operation of vector multispace.

2 Groups of non-linear congruences

2.1. Recall that inertia of X eH,, is the triple of nonnegative integers

In(X) ={z(X), ¢(X), v(X)},
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where z(X), c(X), v(X) are the numbers of positive, zero, and negative eigenvalues of X
(counted with multiplicity). The transformation

Y =1,(X)=Q-X-Q", QeGL(n,C) (2.1)
of H, onto itself is called a congruence.

We list the characteristic properties of congruences:

(1). The set of all congruences (2.1) form a arcwise connected linear transformation group of
H, with respect to the superposition of mappings;

(ii). In(I5(X))=In(X) forall X eH, . In particular 1,(X)>0 < X >0;
(iii). If QeSL(n,C), then detl, (X)=det X forall X eH.
2.2. Suppose F is an arbitrary one-to-one mapping of H,_ onto itself, F™ is the reverse
mapping for F, and fog is the superposition of mappings. Let I, be congruence, i.e.
lo(X)=Q-X-Q",and X eH,. The set of all mappings
9o (X)=Fcly o F(X), QeGL(n,C) (2.2)
is a group of transformations of H, with respect to the superposition of mappings. This group is
denoted by G (n).
We will to call the group Gg(n) is regular if Ing,(X)=InX for all QeGL(n,C) and
deto, (X)=det X forall QeSL(n,C).
2.3 Lemma. The group G (n) is regular if and only if
InX; =InX,, det X, =det X, implies InF(X,)=InF(X,), detF(X,)=detF(X,). (2.3)

Proof. Let G-(n) be regular. For any X;,X,, InX,=InX,, detX,=detX, there exists a
congruence |, such that X,=I1,(X;), QeSL(n,C). The mapping X;=g¢,(X;) closes the
commutative diagram

X,eH, —25 X,eH

Fi1 FI .

X/eH, —2 5 X)eH,
Since group Gg(n) is regular and Qe SL(n,C), then InF(X,)=InF(X,),detF(X,)=detF(X,).
Sufficiency is obvious. .

Let f be one-to-one mapping of R onto itself. For any matrix X H, with spectral value
decomposition X =U -A-U*, where A =diag{4,,--,4,} and U is unitary, we define

f(X)=U -diag{f (4), -~ f(4,)}-U". (2.4)
Itis clear that Y = f (X) is one-to-one mapping of H, onto itself.
2.4 Theorem. Let f be one-to-one mapping of R onto itself, continuous over all of R, and

f(-1)=-f(@). The group G, (n) is regular if and only if

f(x)=Cy-|x|"-sgnx, 5>0, C,=0. (2.5)
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Proof. Let G, (n) be regular. Since f is one-to-one on R and f(-1)=-f(1), then f@)=C,=0.

The function h(x)=f(x)/ f(@) satisfies the condition (2.3) and h()=1. Choosing
X, = diag{-x, 1, 1---1}, X, =diag{x, -1, 1---1}, we get deth(X,)=deth(X,), i.e. h(-x)=—h(x).
Let X, =diag{ix, 1, 1,---1}, X, =diag{4, &, 1,---1}, where A, >0. By Lemma 2.3, we have

h(Au)=h(A)h(x), 4,4>0. (2.6)

In the class of continuous functions on the positive semi-axis the solutions of Cauchy

functional equation (2.6) are functions h(x)=x“, aeR and only they. By condition h(x) is

continuous at point 0 and one-to-one on R. Then «>0. Using condition h(-x)=-h(x) we
obtain (2.5). Sufficiency is obvious. .

Now we shall give the following definition.

2.5 Definition. Let rg(x)=|x|‘5-sgnx,5>0 and rgl(y)=|y|1/5-sgny. The set of all
transformations
X'=po(X)=75[Q-75(X)-Q"], QeGL(n,C), X,X'eH,, (2.7)

is called the group of §-congruences and denote by G;(n). If QeSL(n,C), then the mapping

(2.7) is called unimodular &-congruence. The subgroup of unimodular &-congruences denote
by SG;(n).

2.6 Remark. If 5§=1, then group G;(n) is a group of ordinary congruences.
2.7. The following results are easily checked directly from the definition:
(). QReGLNG) = @50z = Pors B = ¥y1;
(ii). QeGL(n,C) = Ingy(X)=InX forall X eH . Inparticular ¢,(X)>0 < X >0;
(iii). QeSL(n,C) = detpy(X)=detX forall X eH;
(iv). If aeR, then gy(a- X)=a ¢y (X).
Proof (iv): If aeR, then gy (a-X)=7,[Q-7; (e X)-Q =7, o 75 (&) - 9o (X) =cx- o (X) . W

For any matrix Q e GL(n,C) with singular value decomposition Q=U -A-V (see [11], p. 150),
where U,V is unitary and A =diag{e,, -+, ,}>0, we have (see 2.7 (i))

Po= Poav =R Pr°R - (2.8)
Next we will need the following properties of mappings ¢, € G5(n).

2.8 Proposition. The mappings ¢, of group G,(n) satisfy the conditions:

(i). If WeU(n), then g, (X)=WXW";

(i). If 521 and A =diag{«, --,,}>0, then o, (X +Y) =9, (X)+¢,(Y) for all X,Y eH,, if
andonly if o=, =---=q,;

(iii). If 02geC, then g_o(X)=|c[* -@o(X) forall X eH,;

(iv). If 6=1, then oo (X +Y) =0y (X)+¢o(Y) for all X,y eH, if and only if ¢-QeU(n)
for some complex number ¢#0;

(v). Let Iny=InX. There exists ¢,eGs(n) such that Y =g,(X). If moreover
det Y =det X , then ¢, € SG5(n).



Proof (i) - (v):
(i). By definition (2.4), we have g, (X)=7,W 7;"(X)W*] = W[z, o 7;'(X)]W" = WX W*;

(if). The general case is reduced to a case of 2x2 matrices. Let

10 01 a 0
X = . Y= . A= >0.
01 10 0 o

Then
a2 0 0 oo’ a2 ool
P :( : 25 |F| o 6 F = 51 5 1252 ; (2.9)
0 o oy oy 0 ooy o
11 . ! 2
¢A<><+Y>=¢A[ j=2“<af+a§)“- Sl (2.10)
11 o, &

Comparing (2.9) and (2.10), we obtain 2°(af +a)’ ' = a ", i,j=12. If 5=1, then
a, = a, . Sufficiency is obvious;
(iii). We have
0004 = £,6Q-55()-2Q 1= 1,6 7,[Q- 55 (X)- Q1= | -0 (X)
(iv) follows from (i), (ii), (iii) and (2.8);
(v). Let X,YeH, and InX=InY. There are exists U,V eU(n) such that X =U-A, -U",
Y =V-A,-V", where

Ay =diag{4, - A, }, A, =diag{es, -} and sgnA, =sgng,, k=1---n.
By definition, put

1/26

Q=V-A-U", A=diag{e,--- @}, Where o, =| s / 4|
Then
Po(X) =75V -A-U™- 751 (X) U -A-V' 1=V - g5[A - 757 (A ) - Al VT =V -5 (A VT =Y

if 4 =0, otherwise ¢, =1.

If det Y =det X, then, as is easy to see, the determinant of A can be chosenequalto 1 ..

3 Vector Multispace
First we consider the question of a suitable definition of a vector multispace.
3.1 Proposition. Let L be a vector space with the operations x+y, «-x. Each one-to-one
[
mapping ¢ of the set L onto itself defines on L new operations x®y , axx such that:

[
(i). The set L with operations x®y, axx is a new vector space L,;
(ii). The mapping ¢:L — L, is a linear operator.

Proof. By definition, put
¢ 4
x®y=p[p" () +o (Y], axx=gla g~ (X)]. (3.1)
The set L is new vector space with operations (3.1). Moreover:

o(x+y)=0[ 9 (000)+ 07 (9(1) |2 (0D 0(y): pla-X)=g[a-0™(p(x))]= axp(x) .M.



Let G be a group of nonlinear transformations of the vector space L.

The vector multispace of pair {L,G} is the space L with the set operations (3.1), where ¢
runs over all group G.

Remark. Each mapping ¢ <G is automorphism of vector multispace of pair {L,G}:

p(x®Y) = poy [y oo (X)) +1 o™ (0(1) ] =000 B 0(y) (3.2)
go(a>w<x) =g@o l//[a pto (p‘l(go(x))] = a(p;w(p(x) . (3.3)

The set H, is n®- dimensional vector space over R with respect to the ordinary addition of
matrices and multiplication matrix by a number. Let G =G,(n) be a group of & -congruences.

3.2 Definition. The ¢ - multispace H,(n) is the vector multispace of pair {H,,,G;(n)}.[].

Now proceed on to research the operations of multispace Hy(n) .

Q Q
Symbols axX, X®Y by denote the operations (3.1) corresponding to the mapping
@, €Gs(n) . From the homogeneity of transformations ¢, (see 2.7 (iv)) we obtain

3.3 Proposition. There exists a unique multiplication operation by a number in Hj(n) .
Proof. By definition aiX = pola- 9! (X)] = a-@oleg (X)] = a- X . W
3.4 Proposition. The addition's operations of multispace H,(n) satisfy the following conditions:
(i). If Q,ReGL(N,C), then pn (X ®Y)=gn (X) ® gn(¥) for all X,Y €, (n):
(i), If W eU(n), then X ®Y = X +Y forall XY e H,(n);
(ii). If Y =8- X, then X (?BY =X +Y for all QeGL(n,C);
(iv). If QeGL(n,C) and 0= ¢ eC, then X gégY =X (?BY for all X,Y eH,(n);
(V). If XY >0, then X @Y >0 for all QeGL(n,C).
Proof (i) — (v):
(i) follows from (3.2);
(ii). By Proposition 2.8 (i) X ®Y =gu[ay (X)+ @y (V)] =W WX W +WY WIW* = X +Y ;
(iii). We have XC?BY =X<%(,B-X)=(1+/3)-X =X+ X=X+Y;
(iv). Using Propositions 2.7 (iv) and 2.8 (iii), we get

sQ ~ ~ 25 s L s L Q
X ®Y =, olozh (X)+ 60N =|c[ g || a5 )+ ][ 05" (1) |= X &Y ;
Q
(v). Since the mappings ¢, and ¢, preserve inertia, then X @Y = g,[p,' (X) +¢,'(Y)] = 0. H.

From Proposition 3.4 (iv) we obtain
3.5 Corollary. Let SG,(n) is a group of unimodular &- congruences (Definition 2.5). The
multispaces of pairs {H,,, SG,(n)} and {H,,, G;(n)} are the same.l.

Let Q=|Q| _-W is polar value decomposition for QeGL(n,C), where |Q| =(Q-Q")"*>0
uniquely determined and W eU(n) .



Q Ql
3.6 Proposition. Let 6 >0. If QeGL(n,C), then X ®Y =X @Y forall X,Y eH,(n).

Proof. If Q=|Q|_-W, then

Q
XBY = go[ 7500 +05'tN)] = oy, | A 13, XN+ ig, ()| -
Ql,
= ﬂQ\LW[W*(ﬂ_Ql\L(X)W +W*§%1‘L(Y)WJW* =X @Y.l

R Q
3.7 Corollary. Let §#1 and R,QeSL(n,C). The addition's operations X @Y, X @Y are the
same if and only if |R| =|Q] .

Proof. Supposing X éY =X Q%Y forall X,Y eH,, we obtain

25" o PrlpR (X) + o' (=05 (X) + 05" (Y) = 5" o el (X)] + 03" o [ or (V)1
.e. (0510% =Pyig is linearly mapping. By Proposition 2.8 (iv) Q'R=W eU(n), i.e. R=Q-W.
Then |R| =(Q-W-W"-Q")"*=(Q-Q")"*=|Q| .M.

Proposition 3.4(iv), Corollary 3.7 and Remark 2.6 mean that we have proved

3.8 Theorem. If 6>0, §+1, then exist is a one-to-one correspondence between the set of
addition’s operations of multispace H(n) and the set SP, of positive definite matrices with a
unit determinant. If 5 =1, then multispace H,(n) coincides with the vector space H, .H.

3.9 Remark. A group SG,(n) of unimodular congruences is the smallest subgroup in G;(n) that
defines the same set of linear operation on H(n) that all group G,(n) .

4 Partially Ordered Vector Multispace

4.1. A subset C of a vector space L is convex cone if ax+ gy belongsto C for any positive
scalars «, 8, and any x,y in L. A cone is called closed if it contains all its limit points. A cone
is called pointed if CN(-C)={¢}.

Each closed pointed convex cone C induces (see [14]) a partial ordering < on L so
that x<y if and only if y-xeC. This partial ordering compatible with the vector space
structure, i.e. forall x,y,z in L and 0<A in R the following two axioms are satisfied

x<y implies x+z<y+z; x<y implies Ax<Ay.
A vector space with such an order is called an ordered vector space.

There exists a one-to-one correspondence between the partial orders on a vector space L that

are compatible with the vector space structure and the closed pointed convex cones of L.

4.2. Let's list the requirements for the concept of partial order on vector multispace Hy(n):
(i). A relation of partial order must be compatible with all operations of multispace Hj(n) ;
(it). A relation of partial order must be preserving when transformations of group G;(n).

4.3 Proposition. The set P, of all positive semidefinite Hermitian nxn matrices is the unique
(up to multiplication by (-1)) nontrivial closed pointed convex (with respect to each addition)
cone in H,(n) that is invariant under all transformations of group G;(n).
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Proof. The set of all matrices of the same inertia is the smallest (with respect to the set-theoretic
inclusion) subset in H(n) that invariant under the all transformations of the group Gy(n).

Among a nontrivial invariant subsets in H,(n) (the matrices with the same nonzero inertia) only
the set P, of positive definite and the set —P; of negatively definite matrices are convex (with

respect to the each addition) cones. Hence closure P, of the set P, is the desired closed pointed
convex cone in Hg(n). M.

Given the requirements of 4.2 (i) we introduce the following definition.

4.4 Definition. The vector multispace H,(n) is called the ordered vector multispace, if defined
partial order <; on H,(n) such that

Q
X <5Y ifandonlyif Y oXeP, forall QeGL(n,C). 4.2)

4.5 Remark. Considering Corollary 3.8, we can replace the group GL(n,C) by the unimodular
group SL(n,C) in condition (4.1).

There are several conditions that characterize partial ordering <; on the set of positive
definite matrices P, at different values 6 >0.

4.6 Theorem. Let X,Y eP’. If 0<& <1, then the following conditions are equivalent:

1. X <Y,

725 (X)
@i). Y © X=0;
(iii). YV > XY,

35(X)

Proof. (i) = (ii). Let X <;Y,1.e.vQeGL(n,C): Yg)X >0.ThenyY © X=>0.
(i) = (ifi). 1f Y " X 20, then
Pruns [0 (V) =92 120 = 9 [(XTP2YHXY2) 1120 =
= (XTVPYPIXV2Y ] >0 = XVEYX VP> = Y > XY
(iii) = (i). If Y¥9 > XY then QY Q™ >Q'X¥’Q™ forall QeGL(n,C). Since 0<s5<1, then
f(X)=X?° is monotone on P’ . Hence
@QYQ ™) =(@QXYQT) = ol (V) -9 (X)]20 = X <, Y . W,
We need the following Lemma to characterize the partial order at 5 >1.
4.7 Lemma. Let >0 and X,Y e P . There exists a transformation ¢, e SG;(n) such that
Py (X) =201y, g (Y)=A, =diag{ss,--- 11},
where 4, =YdetX and detY =detA,,.

Proof. Since InX =In(4l,) and detX =det (41,), then (Proposition 2.8 (v)) there is exist
R e SL(n,C) such that

Pr(X) =41y, @ (Y)=Y'>0. (4.3)
Let Q,=W-R, where W-Y"-W" = A =diag{s,---, .}, and W e SU(n). Then
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Py (X)=@ur(X)=W- (4 - 1) W' =451, 0 (V) =@y (Y)=W-Y" W' =A N
4.8 Theorem. Let s>1. If X,Y eP/, then
X <Y ifandonly if Y=4-X, g>1. (4.4)

Proof. Let Q=Q;*-U, -A,, where Q, satisfies conditions of Lemma 4.7 and

(U, o0 (N2 uN2Y (A, o] (a O
U”‘[o lnj’ Uz_(—l/ﬁ 1/ﬁ} A”_(o T R >0.
Since Q=Q;*-U,-A, €SL(n,C), then
Q
det (Y ©X)=det 1, | Gt (90, (1)) =it (96,0)) | =
=det [ 93" (U; - AD -U,) =2 05 (1) | = (2t = Ao) -+ (tty = Ao) - det [ 03 (U3 - AD -U,) = 4 - g (1) |,
where AP =gy () =diag {u, - i}, AP =diag {1}, A1, =g, (X).

Q
By condition Y ©X >0 for all QeSL(n,C). Then g >4,, k=1--,n. We to prove that from
conditions X <;Y and §>1, we obtaining z, = 14 . We have

g(@) =det [ gy (U3 -AD -U,) — -1 (1) | =

et | 2o @) (=) 5_/10‘ a? 0]
(W’ -1y &P’ +15%) 0 o

The analysis shows that

_/’10 —4(5 1)( 16 1/5)0 2( 16 JJ5

g(a) ~ 26 W+ 15°)°  at a—0+.

. . Q
If 14"° — 12 #0 and §>1, then lim g(ar) =0, which contradicts the condition Y ©X 20. Then

t, = 4. Similarly we get g4 =44 for k=3,--,n. Hence A{) =, -1, and

Y=g (A =03t (14 1) =B 06 (B - 1) =B- X, B=p 1721,

Sufficiency is obvious. .

The partial order relation X <;Y satisfies the condition 4.2(ii).
4.9 Proposition. Let X,Y >0, ¢, €G,(n). Then X <,;Y in Hy(n) if and only if ¢, (X) <; ¢, (Y).
Proof. If 0<s<1, then
X <Y & XY o Q-X".Q <Q-¥"7-Q" & [p(X)]" <[pg (NI & ¢o(X) <, ¢ (Y) .
If 5>1,then X <,Y & Y=4-X, 21 & @,(Y)=8-0,(X) & @(Y)<; po(X) .M.

In conclusion, we present some inequalities for the Q - sum of positive definite matrices. We
will need the following F. Hansen’s result.

Theorem (see [5]). Let Y and Q be bounded linear operators on Hilbert space H . We suppose
that Y >0 and |Q|<1.If f isan operator monotone function defined on [0, «), then

Q-f(Y) Q" < f(Q-Y-Q).N. (4.5)



4.10 Proposition. Let X >0 and QQ"<1,.If 0<¢g, <4, <1, then
(Q-X"-Q7)* < (Q-X"*-Q")%. (4.6)

Proof. If X >0, then Y =X"% >0. The function f(x)=x%* is an operator monotone function
on [0, «). By inequality (4.5) we obtain

Q- (X¥1)*%.Q" < (Q-XV*.Q)¥% = Q-X%.Q < (Q-X*.Q")¥%.
Since f(x)=x?* is an operator monotone function on [0, «), then (4.6) is true. W .

411 Corollary. Suppose X >0 and ¢ >--->¢,>0 are singular numbers of the matrix
QeGL(n,C). If 0<6,<6,<1,then

(Q-X¥%.Q)% < ™ .(Q-X¥4.Q)%; (QF-XV%.Q )% < %W (QF- XA .Q),
Proof. If QeGL(n,C), then Q =,'Q satisfy the condition QQ; <1,. By Proposition 4.10 we
have

Q- X¥% Q)% < (Q-XY*-Q)* = ™ -(Q-XY*-Q)% < g*-(Q- X% -Q")%.
Similarly for the matrix Q,=«,-Q", Q,Q; <1, .H.

Let 0<s<1and X,Y >0. We introduce the notations

def

def Q
Q- X-Q) = 0,0(X); @i 2o (X)+ @5 (V) ] = X ®,Y.

4.12 Theorem. Suppose X,Y >0 and the matrix QeGL(n,C) has singular numbers
a>--2a,>0.1f 0<5 <6,<1, then

Q Q
X®,Y < (o)) ™ (X &,Y). (4.7

Proof. Using corollary 4.11 we obtain
Q C o
X®uY =05 0] o(X)+050(M)] < &V opy [(/’sz,ofl(x)“"sz,o*(\()} :
< 2N g o [anfz((srm 9, 01 (X) o) "pal,Q*l(Y)} _

- Q
= (e @, g, o[ 950 (X) + 050 (V) ] = (e Y (X &, Y) ..

5 Chains in Ordered Vector Multispace H(n)

A linearly ordered subset in a partially ordered set is called a chain. Let X, be fixed positive
definite matrix of the partially ordered vector multispace H,(n). Consider the set of all chains in
P" < H,(n) passing through the point X, .

5.1 Proposition. If §>1, then through each point X, e P/ in H,(n) passes a unique chain.

Proof. By Theorem 4.8 we have X, <; X if and only if X =p-X,, #>1. Therefore, there is a
unique chain in P passing through the point X, is determined by the equation

X=s-X, s>0.H. (5.1)
5.2. Let 0<5<1 and X, X; are fixed positive definite matrices satisfying the condition

Q
X, <s X,;. By Definition 4.4 and Remark 45 X <;Y if and only if YoX=>0 for all
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QeSL(n,C). Denote by S, (A) the elementary symmetric polynomial of degree k=1,---.n from
the eigenvalues of the matrix A. By the definition Y g)x >0 if and only if the eigenvalues of
Y (%X are nonnegative numbers. It is easy to show that

Xy <5 X, & sk(xléxo)zo, k=1---n forall QeSL(nC). (5.2)

The map X'=g,(X) of the group SG,(n) take each Sk(xléxo) to Sk[q)R(Xl(%XO)].

5.3 Proposition. Let 0<s<1 and X, X, e Hg(n) .The number Sn(xléxo) is an invariant of the
group SG,(n). For k=1,---,n—1 the number Sk(xléxo) is an invariant of the group SG;(n) if
and only if Sk(xléxo) =0.
Proof. The invariance of Sn(Xlé X,) = det (Xléxo) is obvious (see 2.7(iii)). Consider one of the
numbers Sk(xléxo), where k=1,---n-1. If Sk(xléxo)zo, then rank(XlC%XO)<k. The
transformation ¢, of the group SG,(n) preserve the inertia. Then rank ¢R(x1<%xo)<k, i.e.
Sy [q)R(Xlg)XO)]:O. If Sk(Xlg)Xo):&O, then transformations of the group SG;(n) change its

Q
value. Indeed, because the eigenvalues of X,©X, do not change during transformation
@y (X)=W - X -W?*, W eSU(n), we can assume that

Q
Xl@XO =A,u zdiag{/ﬁ’“":un}l (53)
where g4 --- 4 #0. Let R=diag{L,--- L, .;.1--- 1}, o -, =1. Itis easy to see that the value

Q
of S, [¢s(X,©X,)] can be made arbitrarily large by selecting the appropriate number «, ..

5.4. Let 0<5<1 and X,,Y, be positive definite matrices in H,(n). If X, <;Y,, then the points
X, Y, can be connected by a set of chains. By Proposition 5.3 the number

Q Q
s(Q) =S, (X,0X,)=det (X,©X,) is an invariant of group SG,(n) for each matrix Q eGL(n,C).
Among all chains connecting points X,,Y, we are interested in an extreme chain for which the

Q
function s(Q)=det (X,©X,) takes an extreme value. We will need some determinant
inequalities.

6 Determinant inequalities for positive definite matrices

In this section, we prove for vector multispace H,(n) the Minkowski’s determinant inequality
and the following theorem.

6.1 Theorem. Let 0<s <1 and X,Y be positive defined nxn- matrices. If X <;Y,then

55(X)

Q
VQeGL(n,C): det(Y ©X) > det(Y © X). (6.1)
The inequality holds for any pair of positive definite matrices at n=2.

6.2. Recall some definitions. For any x=(x,%,,"--%,) € R", let x, = (X, %z, - %) denote the
decreasing rearrangement of x, i. €., Xy =X, >-->x,,. The elementwize vector ordering
X; <Y;, J=1---n,isdenoted by x<y. By definition, put logx=(logx,---logx,).
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For x,yeR" y issaid to be majorizes x (see [10], [12]) if
Kk Kk n n
i=1 i=1 i=1 i=1

this relation is denoted by x <y.

Let X eP;. The eigenvalues of X are denoted by A (X)=(4,4,,--4,),,1.e. 4 =4, >--->4 >0.
Let D) ={xeR": x, >1,---,x, >1}. Foraset AcR"
X<y on A
means x,yeA and x<y.

Proposition 6.3 is an analogue of Schur's result (see [10], p. 78) for log- majorization.

6.3 Proposition. If log (x,---X,) < log (y;,--~Y,) on D% (1), then
=D = (=D (y, -1 (6.3)
k
Proof. Let Z, =sz, k=1--n.Then logx < logy on D?() if and only if

j=1
X =2 x 21y =2y, >1, X <Y, k=L--wn-1land X =V, .

Let ¢ be a constant vector in D}(1). On the set D={xeD!(1): logx < logy} consider the
function
PO %) =0 =) - (%, =D = (% —D(R /% = 1) -+ (K / X —D(K, 1 X D).

Since y, is constant and X =V., then d¢p/0o%, =0. Therefore logx < logy on D implies
#(X) = ¢(y) if and only if
¢(X1!'“’ Xn) = (ii _1)(5(2 / )?1 _1) Tt ()?n—l / Xn—Z _1)()zn / )?n—l _1)

is decreasing in %;, j=1--,n-1, over the region where xD. Since

0 Xy — Xyt n
D O D0, —D 0 =) <0 on DI,
then (6.3) is true. .
The following two well-known theorems generalize the inequality Lieb and Tearing ([6], [7]).

6.4 Theorem (see [8], Theorem 6.ii). Let X,Y are positive defined Hermitian nxn matrices. If
O<a<p,then

log AY*(X*Y%) < log 2Y#(X?Y?) . 1. (6.4)

6.5 Theorem (see [9], Theorem 2.1). Let A,B are positive definite nxn matrices. If 0<5<1,
then
tr (A°-B’-A%)< tr (A-B-A)’, (6.5)

where tr X stands for matrix trace. l.
To prove Theorem 6.1, we need several lemmas.
6.6 Lemma. If A,B is nxn positive defined Hermitian matrices and 0 <« <1, then
log A (A*"B*A%) < log A (ABA)”. (6.6)
Proof. If A>0, then 1 (AB) =1 (A"?BA"?). Taking into account Theorem 6.4, we obtain

log AY* (A*"?B* A*'?) < log A2V# (AP?BP AP'?) | (6.7)
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Substituting A for AY? in (6.7) and let 0<a < =1. Then
log AY* (A“B*A%) < log A (ABA) < log A(A*B*A%) < log 1 (ABA)* ..
6.7 Lemma. The inequality (6.1) is equivalent to inequality
VA>0: det[A°(AYY A AT —1 ] > det[Y —1.], (6.8)
where Y = (X V2YYIX 120)7,
Proof. Let Q,=X"*. We can write a matrix QeGL(n,C) in the form Q=Q,-A-U, where
A>0, UeU(n). Let Y =g,'(Y)=(X"*Y*X ¥*°)° Then

Q N . PO .
det (Y © X) =det g p [0 (Y ) = gy (X)] =|det Q[ det [A° (A A™) AT — 1,1,

775 (X)

Similarly, for the matrix Y © X we obtain

det (Y T%X)X):det (Y %X):|deth|25 det [} (Y) — 5! (X)]=|det Q| det [Y —1,].
Thus, inequality (6.1) is equivalent to inequality (6.8). 1.
6.8 Lemma. Let 0<5<1, A>0. If Y >1_,then A°(AYV AT A > .

Proof. If Y >1_, then YY’ >1 . We obtain AY”A™*>A?. Since 0<5<1, then f(X)=X? is
monotone on P,. Then (A VY A) > A2 ie. AY(AWYATYA > A.

6.9 Proof of Theorem 6.1. Let X,Y eP’ and X <,Y. Taking into account Theorem 4.6, we
obtain XY <YY?,  je. V= (XVYPYYXV2¥) > Using Lemma 6.8, we get
A(ANYYAYY A’ > 1 . The eigenvalues of C=A’(AYYA*)’A’ and Y are denoted by
A(C)=(h, Aoy Ay), €DI) and (YY) = () sy, tty), €DI(L). Let B= ANY¥A™, By Lemma
6.6, log A (A°B°A%) < log A (ABA)’ so that
log A[A° (AYYO A A < log A [A(AY Y  AAL =log u(Y).
Using Proposition 6.3, we get
det [A° (AN ALY AT 1 1= (2 =D+ (A, D) = (4 —1) - (1, ~D) =det [¥ —1,],

which, according to Lemma 6.7, is equivalent to inequality (6.1).
The condition X <,Y can be omitted for 2x2 matrices. Indeed, let B=A7YYA?,

Y = (X YRYYOX129) are 2x2 matrices. The eigenvalues of C=A’(AYYYA?)’A° and Y are
denoted by A(C)=(4,4,) and u(Y)=(u4,1) . Then

A, =det [A° (AN YA A =det Y = s, . (6.9)
Using Theorem 6.5, we get
A+ 2, =tr (A (AN ALY A< tr (A-ANYY AT A =trY = g + . (6.10)

Combining (6.9) and (6.10), we obtain
det [A° (AN Y A AT — 1, 1= A0, — (A + ) +1 > g, — (14 + 1) +1=det [Y — 1,] . 1.

In conclusion, we prove for vector multispace H,(n) the Minkowski’s determinant inequality.
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6.10 Theorem (Minkowski’s determinant inequality). Let §>0 and X,Y eH,(n) are positive
definite nxn-matrices. Then

Q
[det (Y @X)['" > [det Y]'" +[det X]'", VQeGL(n,C) (6.11)
with equality if and only if Y =cX for some ¢>0.
Proof. By Corollary 3.7, we can assume that Q e SL(n,C). Then det¢,(X) =det X and we obtains

Q 1/n
[det (Y ©X)]" = [det gl (V) + 05 (OT] " = [det [ (V) + N >
> [det ;" (Y)]'" + [det @, (X)]'" = (det Y)'" + (det X)"",

where for ordinary addition the well-known (see [11], p. 510) Minkowski inequality is used. For
the case of equality in (6.11) we have [det [(p;(Y)Jr(p;(X)]]”n = [det gy"(Y)I'" +[det o5 (X)]"".
Then ¢! (Y)=c gy (X), i.e. Y =cX forsome c>0.H.

7 Analog of an indefinite metric on the set of positive definite matrices

By Theorem 3.8 and Proposition 3.4(iv), each addition operation in a multispace H,(n) is
induced by some positive definite matrix A>0. On the set P’ —H,(n) of positive definite

755 (A)

matrices we introduce a ternary operation {X,AY }—Z by the relation Z=X @ Y.

55 (A)

7.1 Proposition. Operation Z=X @ Y retains its form under all the transformations
X' =@ (X), @, €Gs(n) in B/, ie.
725 (A) 735 (A)

P(X ®Y) =X" @ Y. (7.1)

Proof. By Propositions 3.4 (i), 3.6 we have

%5(A) Qr(A) ,\Q-rz‘é(A)\L ,
P(X @ Y)=p(X) ® go(Y)=X" & Y,

where |Q T (A)| _(Q Al/& Q )1/2 [(Q Al/& Q )6]1/25 2@[¢Q(A)] sz(A,) .

7.2 Proposition. Let X,Y eH,(n) be positive definite matrices and &>0. Then

755(X) 55(Y)

Y © X=Y 0 X. (7.2)
r(Y

Proof. It is sufficient to show that for some ¢, € SG,(n) the equality (pQ(Y @ X) 2 (Y © X)
is satisfied. By Lemma 4.7 there exists a transformation ¢, € SG;(n) such that ¢,(X)=A4l,,
@o(Y)=A, =diag{e, -, 11, }. Using Proposition 7.1 we have
75(X) 735 (Zln) 35 (Y) 5(A,)
2(Y © X)=A, © Al oY © X)=A, @ﬂol
Since for each matrix A, =diag{«,,---,«,}eGL(n,C) the equality A#@ﬂo-ln=Aﬂ—/10-ln is

35 (olh) 5 (Ay) 55(Y)

satisfied, then (pQ(Y @ X)_ A, © Al, =A, -2, =Y O X=g¢,(Y © X).N.
7.3 Definition. Let X <,Y be positive definite matrices of the ordered vector multispace H,(n),

735 (Y) ] . .
0<o&<1. The number Ac(X,Y)=[det (Y © X)I'" will be called the interval from point X to
point Y .
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7.4 Theorem (Triangle Reverse Inequality). Let X,Y,Z be positive defined matrices of the
ordered vector multispace H,(n),0<s5<1.If X <;Y <;Z,then

Ac(X,Z) = Ac(X,Y)+Ac(Y,2) (7.3)

725 (X) 725 (X)
with equality ifand only if (Z © X)=c-(Y © X) forsome c>0.
Proof. Using Minkowski’s determinant inequality and Theorem 6.1 we obtain

S a1
725 (X) Tzo

Aa(x,Z){det (ZTZ%X)X)} [det (2 8 v X)]]} >[(6,11)] > [det oS x4

725(X) 725 (X) 75(Y)
+[det (Z © Y)'"=[(6,D]=[det (Y © X)]'"+[det(Z © Y)]'"=Ac(X,Y)+Ac(Y,Z).

The equality Ac(X,Z) = Ac(X,Y)+Ac(Y,Z) is true if only if

Un
5 (X) 735 (X)
{det[(Y ) X)] (Z @ Y)]} = [det(Y © X)]'"+ [det(Zz © Y)]'".

72>(X) Tza(x

By Theorem 6.10 we have (Z © Y)=a-(Y © X) for some a>0. From here we get
5(X) 735(X)

(Z © X)=c-(Y © X) forsome c>0.H.
7.5 Corollary. Let X,, X, be positive defined matrices of the ordered vector multispace H,(n),
0<s<1. If X, <, X,, then there exists a unique chain of "maximum length" connecting points
X,, X, . This maximum chain has a parametrization

Tza (Xo)

X(s)=@0-s)-X, ® s-X;, 0<s<1, (7.4)
which is natural in the sense that Ac(X,, X(s))=s-Ac(X,, X,) for each 0<s<1.

Proof. The maximum length is a consequence of Triangle Reverse Inequality. The interval from
point X, to point X(s) is

(X, X (5)) =[det (X(5) "o X017 = [det (5(X, "0 X )" =5 Ac(Xy, X,) . B,

7.6 Example (Causal Lorentz manifold of dimension 4). Let X,,Y be positive defined 2x2
matrices and 0< ¢ <1. Each Hermitian 2x2 matrix A uniquely represented in the form
ct+z Xx+i
Az( | yj (75)
X—iy ct—z
with fixed constant ¢ >0. Hermitian matrix
725 (Xo) A+ A AX + A
v 0" X = C~At4-r~Az Ax~+|A~y
AX—iAy C-At-Az

Ti}?(xo)
IS an element of the tangent space at the point X,. Here the representation (7.5) for Y o X,
defines each of numbers At,Ax,Ay,Az. Then
25 (Xo) ~ ~ ~
det(Y © X,)=c®-At* —Ax* —Ay® — A7’ (7.6)
is the invariant of the group SG,(2) . This invariant defines a indefinite metric on the manifold of
positive definite 2x2 matrices at point X,. The partial order relation X <,Y is a model of

causal relationship between "events" (7.5). Positive definite matrices model "observed™" events.
Parameter r=s-Ao(X,, X,) (Definition 7.3) can be considered as the free particle's own time.
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The group SG;(2) of nonlinear transformations of multispace H,(2) is a representation of the
arcwise connected component of the unit of Lorenz group. Group SG,(2), unlike the Lorentz

group, is defined not by one, but by two parameters ¢>0 and 0<& <1. Note thatat ¢—o and
each 0<s5<1 the nonlinear transformations of the group SG,(2) are transform into linear

Galilean transformations.
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