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  n  stands for the set of all Hermitian n n  matrices with complex entries. 

  n   stands for the subset of all positive semidefinite n n  matrices. 

  n
   stands for the subset of all positive definite n n  matrices. 

  ( , )GL n  stands for the group of all invertible n n  matrices with respect to the ordinary 

multiplication of matrices. 

  ( , )SL n  stands for the group of  n n  matrices with a unit determinant. 

   ( )U n  stands for the group of  unitary n n  matrices. 

  ( )SU n  stands for the group of  unitary n n  matrices with a unit determinant. 

 

1  Introduction 
 

Invariance and causality are fundamental principles of physics. Coordinate transformations 

play an important role, if they preserve some notion of positivity. This explains a special interest 

of mathematicians and physicists in a partially ordered set of positive definite matrices. The 

congruence transformation X Q X Q    , where ( , )Q GL n  and Q  is Hermitian conjugate 

matrix, is the linear transformation of n . The congruences preserve positive definiteness and 

the standard partial order relation X Y  (in the sense of quadratic forms). Riemannian metrics 

on the set of positive definite matrices and automorphisms of corresponding structures are 

intensively studied (see [1]-[4], [13, chapter 6]). 

In this article we introduce the simplest nonlinear transformations of n . These 

transformations preserve the ordinary congruence basic properties. The nonlinear congruent 

transformations define the structure of so-called ordered vector multispace on n . They are 

order automorphisms for this structure.  In addition, these transformations define an invariant 

scalar function on a pair of positive definite matrices (an analogue of the point-dependent 

indefinite metric). The triangle inverse inequality is performed on the causally connected point 

triple. If a pair of points is causally connected, then there is a structure of a vector space on n  

such that the equation of geodesic (of maximum “length”) is a linear equation. The geodesic line 

point determines the addition operation choice in its equation. It’s addition operation is the 

operation of vector multispace. 

 

2  Groups of non-linear congruences 
 

2.1. Recall that inertia of nX   is the triple of nonnegative integers 

   ( ) { ( ), ( ), ( )}In X X X X   ,             
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where   ( ), ( ), ( )X X X    are the numbers of positive, zero, and negative eigenvalues of X  

(counted with multiplicity). The transformation 

( ) ,   ( , )QY l X Q X Q Q GL n              (2.1) 

of n  onto itself  is called a congruence.  

We list the characteristic properties of congruences: 

(i). The set of all congruences (2.1) form a arcwise connected  linear transformation group of 

n  with respect to the superposition of mappings; 

(ii).   ( ( )) ( )QIn l X In X  for all nX  . In particular  ( ) 0  0Ql X X   ; 

(iii). If ( , )Q SL n , then det ( ) detQl X X  for all nX  . 

2.2. Suppose F  is an arbitrary one-to-one mapping of  n  onto itself,  
1F   is the reverse 

mapping for  F , and f g  is the superposition of mappings. Let  Ql  be congruence, i.e.  

( )Ql X Q X Q   , and nX  . The set of all mappings 

1( ) ( ),   ( , )Q QX F l F X Q GL n             (2.2) 

is a group of transformations of n  with respect to the superposition of mappings. This group is 

denoted by ( )FG n . 

We will to call the group ( )FG n  is regular if    ( )QIn X In X   for all ( , )Q GL n  and 

det ( ) detQ X X   for all ( , )Q SL n . 

2.3 Lemma. The group ( )FG n  is regular if and only if   

    1 2 1 2,  det detIn X In X X X    implies      1 2 1 2( ) ( ),  det ( ) det ( )In F X In F X F X F X  .  (2.3) 

Proof. Let ( )FG n  be regular. For any 1 2,X X ,     1 2 1 2,  det detIn X In X X X   there exists a 

congruence Ql  such that 2 1( )QX l X , ( , )Q SL n . The mapping 2 1( )QX X   closes the 

commutative diagram 

1 2

1

1 2

        

          

        

Q

Q

l

n n

n n

X X

F F

X X




  

 

   

.             

Since group ( )FG n  is regular and ( , )Q SL n , then     1 2( ) ( )In F X In F X , 1 2det ( ) det ( )F X F X . 

Sufficiency is obvious.■ . 

Let f  be one-to-one mapping of  onto itself.  For any matrix nX   with spectral value 

decomposition X U U   , where  1diag{ , , }n     and U  is unitary, we define 

 1( ) diag{ ( ), , ( )}nf X U f f U      .         (2.4) 

It is clear that ( )Y f X  is one-to-one mapping of n onto itself. 

2.4 Theorem. Let f  be one-to-one mapping of  onto itself, continuous over all of , and 

( 1) (1)f f   . The group ( )fG n  is regular if and only if  

  0 0( ) sgn ,  0,  0f x C xx C


     .          (2.5) 
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Proof. Let ( )fG n  be regular. Since f  is one-to-one on  and ( 1) (1)f f   , then 0(1) 0f C  . 

The function  ( ) ( ) / (1)h x f x f  satisfies the condition (2.3) and  (1) 1h  . Choosing 

  1 diag{ ,  1,  1, ,1}X x   ,  2 diag{ , 1,  1, ,1}X x   , we get     1 2det ( ) det ( )h X h X , i.e.   ( ) ( )h x h x   .   

Let   1 diag{ ,  1,  1, ,1}X   , 2 diag{ ,  ,  1, ,1}X    , where , 0   . By Lemma 2.3, we have 

    ( ) ( ) ( ),   , 0h h h      .           (2.6) 

In the class of continuous functions on the positive semi-axis the solutions of Cauchy 

functional equation (2.6) are functions   ( ) ,  h x x    and only they. By condition ( )h x  is 

continuous at point 0  and one-to-one on . Then 0  . Using condition   ( ) ( )h x h x    we 

obtain (2.5). Sufficiency is obvious.■ . 

Now we shall give the following definition.  

2.5 Definition. Let   ( ) sgn ,  0x x x


     and   

1/1( ) sgny y y



   . The set of all 

transformations  
1( ) [ ( ) ],   ( , ),    ,Q nX X Q X Q Q GL n X X            ,      (2.7) 

is called the group of  -congruences and denote by ( )G n . If ( , )Q SL n , then the mapping 

(2.7) is called unimodular  -congruence. The subgroup of unimodular  -congruences denote 

by ( )SG n . 

2.6 Remark. If 1  , then group ( )G n  is a group of ordinary congruences.  

2.7. The following results are easily checked directly from the definition: 

(i).    1

1, ( , )    ,   Q R Q R Q Q
Q R GL n      


    ; 

(ii).    ( , )    ( )QQ GL n In X InX     for all nX  . In particular ( ) 0  0Q X X    ; 

(iii).   ( , )    det ( ) detQQ SL n X X     for all nX  ; 

(iv). If  , then ( ) ( )Q QX X      . 

Proof (iv): If  , then 1 1( ) [ ( ) ] ( ) ( ) ( )Q Q QX Q X Q X X                        .■ . 

For any matrix ( , )Q GL n  with singular value decomposition Q U V    (see [11], p. 150), 

where ,U V  is unitary and  1diag{ , , } 0n     , we have (see 2.7 (i)) 

    Q U V U V       .           (2.8) 

Next we will need the following properties of mappings ( )Q G n  . 

2.8 Proposition. The mappings Q  of group ( )G n  satisfy the conditions: 

(i).  If  ( )W U n , then   ( )W X W X W  ; 

(ii). If 1   and  1diag{ , , } 0n     , then ( ) ( ) ( )X Y X Y        for all , nX Y  if 

and only if  1 2 n      ; 

(iii). If 0   , then   

2
( ) ( )Q QX X



       for all  nX  ;  

(iv). If 1  , then ( ) ( ) ( )Q Q QX Y X Y      for all , nX Y   if and only if ( )Q U n    

for some complex number 0  ; 

(v). Let   InY InX . There exists ( )Q G n   such that  ( )QY X . If moreover 

  det detY X , then ( )Q SG n  .  
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Proof  (i) - (v):  

(i). By definition (2.4), we have           

1 1( ) [ ( ) ] [ ( )]W X W X W W X W W X W              ; 

(ii). The general case is reduced to a case of 2 2  matrices. Let 

1

2

01 0 0 1
,     ,     0

00 1 1 0
X Y





    
        
     

.         

Then 

    

2 2
1 1 2 1 1 2

2 2
2 1 2 1 2 2

0 0
( ) ( )

0 0
X Y

     

     

     
 

     
 

     
        

     
     

;     (2.9) 

    

2
1 1 21 2 2 1

1 2 2
1 2 2

1 1
( ) 2 ( )

1 1
X Y     

   
  

 
 

  
           

.      (2.10) 

Comparing (2.9) and (2.10), we obtain 1 2 2 1 1 1
1 22 ( ) ,   , 1,2i j i j            . If 1  , then 

1 2  . Sufficiency is obvious; 

(iii). We have  

    

2 21 1( ) [ ( ) ] ( ) [ ( ) ] ( )
def

Q QX Q X Q Q X Q X


                  
          ;    

(iv) follows from (i), (ii), (iii) and (2.8); 

(v). Let , nX Y  and   InX InY . There are exists , ( )U V U n  such that XX U U    , 

YY V V    , where 

  1 1diag{ , , },   diag{ , , }X n Y n           and  sgn sgn ,  1, ,k k k n    .     

By definition, put  

1,   { , , }nQ V U diag        , where   

1/2
/k k k


    if 0k  , otherwise 1k  .    

Then  
1 1 1( ) [ ( ) ] [ ( ) ] [ ( )]Q X YX V U X U V V V V V Y                                    .   

If   det detY X , then, as is easy to see, the determinant of   can be chosen equal to 1  .■ . 

 

3  Vector Multispace  
 

First we consider the question of a suitable definition of a vector multispace. 

3.1 Proposition. Let L  be a vector space with the operations  x y , x  . Each one-to-one 

mapping   of the set L  onto itself defines on L  new operations x y


 , x


  such that: 

(i). The set L  with operations x y


 , x


  is a new vector space L ; 

(ii). The mapping : L L   is a linear operator. 

Proof. By definition, put 

  

1 1 1[ ( ) ( )],   [ ( )]x y x y x x
 

              .        (3.1) 

The set L  is new vector space with operations (3.1). Moreover: 

      

1 1 1( ) ( ) ( ) ( ) ( );    ( ) ( )  ( )x y x y x y x x x
 

                                 .■ .   
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Let G  be a group of nonlinear transformations of the vector space L . 

The vector multispace of pair { , }L G  is the space L  with the set operations (3.1), where   

runs over all group G . 

Remark. Each mapping G  is automorphism of vector multispace of pair { , }L G : 

   1 1 1 1( ) ( ) ( ) ( ) ( )x y x y x y
  

                    ;      (3.2) 

 1 1( ) ( ) ( )x x x
  

                 .■ .        (3.3) 

The set n  is 2n - dimensional vector space over  with respect to the ordinary addition of 

matrices and multiplication matrix by a number. Let ( )G G n  be a group of  -congruences.  

3.2 Definition. The  - multispace ( )n  is the vector multispace of pair { , ( )}n G n .□ . 

Now proceed on to research the operations of multispace ( )n . 

Symbols ,  
Q Q

X X Y   by denote the operations (3.1) corresponding to the mapping 

( )Q G n  . From the homogeneity of transformations Q  (see 2.7 (iv)) we obtain 

3.3 Proposition. There exists a unique multiplication operation by a number in ( )n .  

Proof. By definition         

1 1[ ( )] [ ( )]
Q

Q Q Q QX X X X               .■ . 

3.4 Proposition. The addition's operations of  multispace ( )n  satisfy the following conditions: 

 (i). If , ( , )Q R GL n , then    ( ) ( ) ( )
Q R Q

R R RX Y X Y  


    for all , ( )X Y n ; 

 (ii). If ( )W U n , then   

W

X Y X Y    for all , ( )X Y n ; 

 (iii). If Y X  , then 
Q

X Y X Y    for all ( , )Q GL n ; 

 (iv). If ( , )Q GL n  and 0   , then 
Q Q

X Y X Y
 

    for all , ( )X Y n ; 

 (v). If , 0X Y  , then  0
Q

X Y   for all ( , )Q GL n . 

Proof  (i) – (v): 

(i) follows from (3.2); 

(ii). By Proposition 2.8 (i)         

1 1[ ( ) ( )] [ ]
W

W W WX Y X Y W W X W W Y W W X Y             ; 

(iii). We have  ( ) (1 )
Q Q

X Y X X X X X X Y              ; 

(iv). Using Propositions 2.7 (iv) and 2.8 (iii), we get 

      

2 2 21 1 1 1[ ( ) ( )] ( ) ( )
Q Q

Q Q Q Q Q QX Y X Y X Y X Y


  

          


    
  

          
 

;   

(v). Since the mappings Q  and 1

Q
  preserve inertia, then       

1 1[ ( ) ( )] 0
Q

Q Q QX Y X Y       .■ . 

From Proposition 3.4 (iv) we obtain 

3.5 Corollary. Let ( )SG n  is a group of unimodular  - congruences (Definition 2.5). The 

multispaces of pairs  { , ( )}n SG n  and  { , ( )}n G n  are the same.■ . 

Let   
L

Q Q W   is polar value decomposition for ( , )Q GL n , where   

1/2( ) 0
L

Q Q Q     

uniquely determined and ( )W U n . 
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3.6 Proposition. Let 0  . If ( , )Q GL n , then     

L
QQ

X Y X Y    for all , ( )X Y n . 

Proof. If   

L
Q Q W  , then 

         

     
1 1 1 1 1 1( ) ( ) ( ( )) ( ( ))

L L L

Q

Q Q Q W W WQ Q Q
X Y X Y X Y                       

      

 
   

         

        
1 1( ) ( )

L

L L L

Q

Q Q Q
W W X W W Y W W X Y          
 

.■ .     

3.7 Corollary. Let 1   and , ( , )R Q SL n . The addition's operations   

R

X Y ,   

Q

X Y  are the 

same if and only if     
L L

R Q . 

Proof. Supposing     

QR

X Y X Y    for all , nX Y , we obtain  

1 1 1 1 1 1 1 1 1[ ( ) ( )] ( ) ( ) [ ( )] [ ( )]Q R R R Q Q Q R R Q R RX Y X Y X Y                        ,     

i.e. 1

1
Q R Q R

   




  is linearly mapping. By Proposition 2.8 (iv) 1 ( )Q R W U n   , i.e. R Q W  . 

Then     

1/2 1/2( ) ( )
L L

R Q W W Q Q Q Q         .■ . 

 

Proposition 3.4(iv), Corollary 3.7 and Remark 2.6 mean that we have proved 

3.8 Theorem. If 0,  1   , then exist is a one-to-one correspondence between the set of  

addition's operations of multispace ( )n  and the set nS   of positive definite matrices with a 

unit determinant. If 1  , then  multispace 1( )n  coincides with the vector space n .■ . 

3.9 Remark. A group ( )SG n  of unimodular congruences is the smallest subgroup in ( )G n  that 

defines the same set of linear operation on ( )n  that all group ( )G n . 

 

4  Partially Ordered Vector Multispace  
 

4.1. A subset C  of a vector space L  is convex cone if x y   belongs to C  for any positive 

scalars ,  , and any ,x y  in L . A cone is called closed if it contains all its limit points. A cone 

is called pointed if ( ) { }C C   . 

Each closed pointed convex cone C  induces (see [14]) a partial ordering    on L  so 

that x y  if and only if  y x C  . This partial ordering compatible with the vector space 

structure, i.e. for all , ,x y z  in L   and 0   in  the following two axioms are satisfied 

x y   implies  x z y z   ;   x y   implies  x y  .         

A vector space with such an order is called an ordered vector space.  

There exists a one-to-one correspondence between the partial orders on a vector space L  that 

are compatible with the vector space structure and the closed pointed convex cones of L . 

4.2. Let's list the requirements for the concept of partial order on vector multispace ( )n :  

(i). A relation of partial order must be compatible with all operations of multispace ( )n ; 

(ii). A relation of partial order must be preserving  when transformations of group ( )G n . 

4.3 Proposition. The set n  of all positive semidefinite Hermitian n n  matrices is the unique 

(up to multiplication by ( 1) ) nontrivial closed pointed convex (with respect to each addition) 

cone in ( )n  that is invariant under all transformations of group ( )G n . 

https://en.wikipedia.org/wiki/Ordered_vector_space
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Proof. The set of all matrices of the same inertia is the smallest (with respect to the set-theoretic 

inclusion) subset in ( )n  that invariant under the all transformations of the group ( )G n . 

Among a nontrivial invariant subsets in ( )n  (the matrices with the same nonzero inertia) only 

the set n
  of positive definite and the set n

  of negatively definite matrices are convex (with 

respect to the each addition) cones. Hence closure n  of the set n
  is the desired closed pointed 

convex cone in ( )n .■ . 

Given the requirements of 4.2 (i) we introduce the following definition.  

4.4 Definition. The vector multispace ( )n  is called the ordered vector multispace, if defined 

partial order   on ( )n  such that 

 X Y    if and only if    

Q

nY X     for all  ( , )Q GL n .      (4.1) 

4.5 Remark. Considering Corollary 3.8, we can replace the group ( , )GL n  by the unimodular 

group ( , )SL n  in condition (4.1). 

There are several conditions that characterize partial ordering    on the set of positive 

definite matrices n
  at different values 0  .  

4.6 Theorem. Let , nX Y  . If  0 1  , then the following conditions are equivalent: 

(i).   X Y ;                         

(ii).    

1
2 ( )

0
X

Y X
 

 ;                       

(iii).  1/ 1/Y X  .                        

Proof. (i)   (ii).  Let  X Y , i.e.  ( , ) :  0
Q

Q GL n Y X   . Then   

1
2 ( )

0
X

Y X
 

 . 

(ii)   (iii). If   

1
2 ( )

0
X

Y X
 

 , then 

1/2 1/2 1/2

1 1[ ( ) ( )] 0 
X X X

Y X        1/2

1/2 1/ 1/2 [( ) ] 0 nX
X Y X I

                

1/2 1/ 1/2 1/2 1/ 1/2 1/ 1/ ( ) 0      n nX Y X I X Y X I Y X                  .  

(iii)   (i). If 1/ 1/Y X  , then 1 1/ 1 1 1/ 1Q Y Q Q X Q        for all ( , )Q GL n . Since 0 1  , then 

( )f X X   is monotone on n
 . Hence 

 

1 1/ 1 1 1/ 1 1 1( ) ( )   [ ( ) ( )] 0  Q Q QQ Y Q Q X Q Y X X Y   
               .■ .     

We need the following Lemma to characterize the partial order at 1  . 

4.7 Lemma. Let 0   and , nX Y  . There exists a transformation 
0

( )Q SG n   such that 

 

0 00 1( ) ,    ( ) diag{ , , }Q n Q nX I Y           ,          

where 0 detn X   and  det detY   . 

Proof. Since   0( )nInX In I  and  0det det ( )nX I , then (Proposition 2.8 (v)) there is exist 

( , )R SL n  such that 

0( ) ,   ( ) 0R n RX I Y Y       .          (4.3) 

Let 0Q W R  , where  1diag{ , , }nW Y W         , and ( )W SU n . Then 

https://en.wikipedia.org/wiki/Ordered_vector_space
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0 00 0( ) ( ) ( ) ,   ( ) ( )Q W R n n Q W RX X W I W I Y Y W Y W       
 

             .■ .   

4.8 Theorem. Let 1  . If , nX Y  , then  

 X Y   if and only if  ,   1Y X    .        (4.4) 

Proof.  Let 1
0 n nQ Q U   , where 0Q  satisfies conditions of Lemma 4.7 and 

2 2

2 2 1
2 2

00 01/ 2 1/ 2
,  ;    ,  0

0 0 01/ 2 1/ 2
n n

n n

U
U U

I I



 
 

       
                   

.    

Since 1
0 ( , )n nQ Q U SL n    , then 

       1 0 00

1 1det ( ) det ( ) ( )
n n n nn n

Q

U Q U QQ U
Y X Y X    

 
  

   
 

        

    

2 2

1 ( ) 1 1 (2) 1
0 3 0 0 2 2 0 2det ( ) ( ) ( ) ( ) det ( ) ( )

n n

n
n n n nU U I U U I               

   
                    , 

where 
0 0

( ) (2)
1 1 2 0( ) diag { , , },   diag { , },    ( )n

Q n n QY I X               . 

By condition  0
Q

Y X   for all ( , )Q SL n . Then 0 ,   1, ,k k n    . We to prove that from 

conditions  X Y  and 1  , we obtaining 2 1  . We have 

  

2 2

1 (2) 1
2 2 0 2( ) det ( ) ( )g U U I     

 
                        

  

2 1/ 1/ 1/ 1/ 2
1 2 1 2

01/ 1/ 2 1/ 1/ 2
1 2 1 2

( ) ( ) 0
det 2

( ) ( ) 0


    



    

     


     

 


     
      

        

.     

The analysis shows that 

  
4( 1) 1/ 1/ 2 1/ 1/ 20

1 2 1 2( ) ( ) ( )
2

g      




             at   0   .        

If 1/ 1/
1 2 0     and 1  , then 

0
lim ( )g



 

  , which contradicts the condition  0
Q

Y X  . Then 

2 1  . Similarly we get 1k   for 3, ,k n  . Hence ( )
1

n
nI     and  

0 0 0

1 ( ) 1 1
1 0 1 0( ) ( ) ( ) ,     / 1n

Q Q n Q nY I I X                      .        

Sufficiency is obvious.■ . 

 

The partial order relation  X Y  satisfies the condition 4.2(ii).  

4.9 Proposition. Let , 0X Y  , ( )Q G n  . Then  X Y  in ( )n  if and only if  ( ) ( )Q QX Y  .  

Proof.  If 0 1  , then  

 

1/ 1/ 1/ 1/ 1/ 1/      [ ( )] [ ( )]   ( ) ( )Q Q Q QX Y X Y Q X Q Q Y Q X Y X Y     

                  . 

If 1  , then      ,  1    ( ) ( )    ( ) ( )Q Q Q QX Y Y X Y X Y X                 .■ . 

In conclusion, we present some inequalities for the Q - sum of positive definite matrices. We 

will need the following F. Hansen’s result.  

Theorem (see [5]). Let Y  and Q  be bounded linear operators on Hilbert space H . We suppose 

that 0Y   and   1Q  . If f  is an operator monotone function defined on  [0, ) , then 

    ( ) ( )Q f Y Q f Q Y Q      .■ .          (4.5) 
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4.10 Proposition. Let 0X   and 
nQQ I  . If  1 20 1    , then 

2 2 1 11/ 1/
( )  ( )Q X Q Q X Q

         .           (4.6) 

Proof. If 0X  , then 11/ 0Y X   . The function 1 2/
( )f x x

 
  is an operator monotone function 

on  [0, ) . By inequality (4.5) we obtain   

1 1 2 1 1 2 2 1 1 21/ / 1/ / 1/ 1/ /
( ) ( )    ( )Q X Q Q X Q Q X Q Q X Q

                       .      

Since 2( )f x x


  is an operator monotone function on  [0, ) , then (4.6) is true.■ . 

4.11 Corollary. Suppose 0X   and 1 0n      are singular numbers of the matrix 

( , )Q GL n . If  1 20 1    , then  

2 2 2 1 1 1 2 2 2 1 1 1
  

1/ 2( ) 1/ 1/ 2( ) 1/1 1 1 1

1( ) ( ) ;    ( ) ( )nQ X Q Q X Q Q X Q Q X Q
                                 .   

Proof. If ( , )Q GL n , then 1

1 1Q Q   satisfy the condition 
1 1 nQ Q I  . By Proposition 4.10 we 

have 
2 2 1 1 2 2 2 1 1 1

  
1/ 1/ 2 1/ 2 1/

1 1 1 1 1 1( ) ( )     ( ) ( )Q X Q Q X Q Q X Q Q X Q
                           .    

Similarly for the matrix 1

2 2 2,  n nQ Q Q Q I     .■ . 

Let 0 1   and , 0X Y  . We introduce the notations 

    

   
1/ 1 1

, , , ,( ) ( );     ( ) ( )
def def Q

Q Q Q QQ X Q X X Y X Y 

                 .       

4.12 Theorem. Suppose , 0X Y   and the matrix ( , )Q GL n  has singular numbers 

1 0n     . If  1 20 1    , then 

   

2 1

2 1

      
2( )

1  / ( )
Q Q

nX Y X Y
 

  


    .         (4.7) 

Proof. Using corollary 4.11 we obtain 

 
2 1

1 1
2 2 2 2 1 2 2

   

   
2( )1 1

, , , 1 , , ,
 ( ) ( ) ( ) ( )

Q

Q Q Q Q Q Q
X Y X Y X Y 

      
       

             
        

2 1 2 1 2 1
1 1

1 1 1

 
2( ) 2( ) 2( )

1 , , ,
( ) ( )Q n nQ Q
X Y     

  
      

          
 

           

 
2 1 2 1

1 1 1 1

   
2( ) 2( )1 1

1 , , , 1( / ) ( ) ( ) ( / ) ( )
Q

n Q Q Q nX Y X Y
   

                   .■ .   

 

5  Chains in Ordered Vector Multispace ( )n   

 

A linearly ordered subset in a partially ordered set is called a chain. Let 0X  be fixed positive 

definite matrix of the partially ordered vector multispace ( )n . Consider the set of all chains in 

( )n n

   passing through the point 0X . 

5.1 Proposition. If 1  , then through each point 
0 nX   in ( )n  passes a unique chain. 

Proof.  By Theorem 4.8 we have  0X X  if and only if 0 ,  1X X    . Therefore, there is a 

unique chain in 
n

  passing through the point 0X  is determined by the equation 

0 ,   0X s X s   .■ .             (5.1) 

5.2. Let 0 1   and 0 1,X X  are fixed positive definite matrices satisfying the condition 

 0 1X X . By Definition 4.4 and Remark 4.5  X Y  if and only if   0
Q

Y X   for all 
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( , )Q SL n . Denote by ( )kS A  the elementary symmetric polynomial of degree 1, ,k n   from 

the eigenvalues of the matrix A . By the definition  0
Q

Y X   if and only if the eigenvalues of 

 

Q

Y X  are nonnegative numbers. It is easy to show that 

 0 1 1 0   ( ) 0,  1, ,
Q

kX X S X X k n       for all  ( , )Q SL n .     (5.2) 

The map ( )RX X   of the group ( )SG n  take each 1 0( )
Q

kS X X  to 1 0[ ( )]
Q

k RS X X .  

5.3 Proposition. Let 0 1   and 0 1, ( )X X n .The number 1 0( )
Q

nS X X  is an invariant of the 

group ( )SG n . For 1, , 1k n    the number 1 0( )
Q

kS X X  is an invariant of the group ( )SG n  if 

and only if 1 0( ) 0
Q

kS X X  . 

Proof. The invariance of  1 0 1 0( ) det ( )
Q Q

nS X X X X  is obvious (see 2.7(iii)). Consider one of the 

numbers 1 0( )
Q

kS X X , where 1, , 1k n   . If 1 0( ) 0
Q

kS X X  , then  1 0( )
Q

rank X X k . The 

transformation R  of the group ( )SG n  preserve the inertia. Then  1 0( )
Q

Rrank X X k  , i.e. 

 1 0[ ( )] 0
Q

k RS X X  . If 1 0( ) 0
Q

kS X X  , then transformations of the group ( )SG n  change its 

value. Indeed, because the eigenvalues of 1 0

Q

X X  do not change during transformation 

( ) ,  ( )W X W X W W SU n     , we can assume that 

1 0 1{ , , }
Q

nX X diag      ,          (5.3) 

where 1 0k   . Let 1 1{1, ,1, , ,1, ,1,},   1k k k kR diag          . It is easy to see that the value 

of 1 0[ ( )]
Q

k RS X X  can be made arbitrarily large by selecting the appropriate number k .■ . 

5.4. Let 0 1   and 0 0,X Y  be positive definite matrices in ( )n . If  0 0X Y , then the points 

0 0,X Y  can be connected by a set of chains. By Proposition 5.3 the number 

 1 0 1 0( ) ( ) det ( )
Q Q

ns Q S X X X X   is an invariant of group ( )SG n  for each matrix ( , )Q GL n . 

Among all chains connecting points 0 0,X Y  we are interested in an extreme chain for which the 

function  1 0( ) det ( )
Q

s Q X X  takes an extreme value. We will need some determinant 

inequalities. 

 

6  Determinant inequalities for positive definite matrices 
 

In this section, we prove for vector multispace ( )n  the Minkowski’s determinant inequality 

and the following theorem. 

6.1 Theorem. Let 0 1   and ,X Y  be positive defined n n - matrices.  If  X Y , then  

    

1
2

  

( )

( , ) :   det ( ) det ( )
XQ

Q GL n Y X Y X
 

   .       (6.1) 

The inequality holds for any pair of positive definite matrices at 2n  . 

6.2. Recall some definitions. For any 1 2( , , , ) n
nx x x x   , let [1] [2] [ ]( , , , )nx x x x


   denote the 

decreasing rearrangement of x , i. e., [1] [2] [ ]nx x x    . The elementwize vector ordering 

j jx y , 1, ,j n  , is denoted by x y . By definition, put 1log (log , ,log )nx x x  . 
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For , nx y  y  is said to be majorizes x  (see [10], [12]) if 

  [ ] [ ]

1 1

,   1 1
k k

i i

i i

x y k n
 

       and     [ ] [ ]

1 1

n n

i i

i i

x y
 

  ,      (6.2) 

this relation is denoted by  x y .  

Let nX  . The eigenvalues of X  are denoted by  1 2( ) ( , , , )nX   


  , i.e. 1 2 0n       .  

Let  1(1) { :  1, , 1}n n
nx x x      . For a set n  

x y   on                   

means ,x y  and x y .  

Proposition 6.3 is an analogue of Schur's result (see [10], p. 78) for log- majorization. 

6.3 Proposition. If      1 1log ( , , ) log ( , , )n nx x y y       on (1)n
 , then 

1 1( 1) ( 1)  ( 1) ( 1)n nx x y y       .         (6.3) 

Proof. Let 
1

,  1, ,
k

k j

j

z z k n


    . Then   log logx y  on  (1)n
  if and only if  

1 11,   1n nx x y y        ,  ,   1, , 1k kx y k n     and  n nx y .      

Let ŷ  be a constant vector in (1)n
 . On the set   ˆ{ (1) :  log log }nx x y   consider the 

function 

1 1 1 2 1 1 2 1( , , ) ( 1) ( 1) ( 1)( / 1) ( / 1)( / 1)n n n n n nx x x x x x x x x x x               .     

Since ny  is constant and n nx y , then / 0nx   . Therefore   log logx y  on  implies 

( ) ( )x y   if and only if  

1 1 2 1 1 2 1( , , ) ( 1)( / 1) ( / 1)( / 1)n n n n nx x x x x x x x x                    

is decreasing in ,   1, , 1jx j n   , over the region where x . Since  

1
1 1 2

1

( 1) ( 1)( 1) ( 1) 0k k
k k n

k k

x x
x x x x

x x x

 
 


         

  
  on (1)n

 ,      

then (6.3) is true.■ . 

 

The following two well-known theorems generalize the inequality Lieb and Tearing ([6], [7]).  

6.4 Theorem (see [8], Theorem 6.ii). Let ,X Y  are positive defined Hermitian n n  matrices.   If 

0    , then 

    
1/ 1/log ( ) log ( )X Y X Y       .■ .          (6.4) 

6.5 Theorem (see [9], Theorem 2.1). Let ,A B  are positive definite n n  matrices. If 0 1  , 

then 

tr ( )  tr ( )A B A A B A        ,          (6.5) 

where tr X  stands for matrix trace.■ . 

 

То prove Theorem 6.1, we need several lemmas. 

6.6 Lemma. If ,A B  is n n  positive defined Hermitian matrices and 0 1  , then 

    ( ) ( )log logA B A ABA     .           (6.6) 

Proof. If 0A , then   

1/2 1/2( ) ( )AB A BA  . Taking into account Theorem 6.4, we obtain 

    
1/ /2 /2 1/ /2 /2log ( ) log ( )A B A A B A         .        (6.7) 
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Substituting A   for 1/2A  in (6.7) and let 0 1    .  Then 

        
1/log ( ) log ( )    log ( ) log ( )A B A ABA A B A ABA           .■ .       

6.7 Lemma. The inequality (6.1) is equivalent to inequality 

    

1 1/ 1ˆ ˆ0:  det [ ( ) ]  det [ ]n nA A A Y A A I Y I         ,       (6.8) 

where 1/2 1/ 1/2ˆ ( )Y X Y X     . 

Proof. Let 1/2
0Q X  . We can write a matrix ( , )Q GL n  in the form 0Q Q A U   , where 

0,  ( )A U U n  . Let 
0

1 1/2 1/ 1/2ˆ ( ) ( )QY Y X Y X       . Then 

      

0 0 0

21 1 1 1/ 1

0
ˆdet ( ) det [ ( ) ( )] det det [ ( ) ]

Q

Q AU Q AU Q AU nY X Y X Q A A Y A A I
             .    

Similarly, for the matrix  

1
2 ( )X

Y X
 

 we obtain  

        

1
2 0

0 0

( )
2 21 1

0 0
ˆdet ( ) det ( ) det det [ ( ) ( )] det det [ ]

X Q

Q Q nY X Y X Q Y X Q Y I


 
 



      .    

Thus, inequality (6.1) is equivalent to inequality (6.8).■ . 

6.8 Lemma. Let 0 1  , 0A .  If  nY I , then  

1 1/ 1( ) nA A Y A A I      . 

Proof. If nY I , then 1/

nY I  . We obtain 1 1/ 1 2A Y A A   . Since 0 1  , then ( )f X X   is 

monotone on n . Then 1 1/ 1 2( )A Y A A     , i.e.  

1 1/ 1ˆ( ) nA A Y A A I      .■ . 

 

6.9 Proof of Theorem 6.1. Let , nX Y   and  X Y . Taking into account Theorem 4.6, we 

obtain 1/ 1/X Y  , i.e. 1/2 1/ 1/2ˆ ( ) nY X Y X I      . Using Lemma 6.8, we get 

 

1 1/ 1ˆ( ) nA A Y A A I      . The eigenvalues of  

1 1/ 1ˆ( )C A A Y A A      and Ŷ  are denoted by 

 1 2( ) ( , , , ) (1)n
nC    

    and  1 2
ˆ( ) ( , , , ) (1)n

nY    
   . Let 1 1/ 1ˆB A Y A  . By Lemma 

6.6,     log ( ) log ( )A B A ABA      so that 

        
1 1/ 1 1 1/ 1ˆ ˆ ˆlog [ ( ) ] log [ ( ) ] log ( )A A Y A A A A Y A A Y            .       

Using Proposition 6.3, we get  

    

1 1/ 1
1 1

ˆ ˆdet [ ( ) ] ( 1) ( 1)  ( 1) ( 1) det [ ]n n n nA A Y A A I Y I                    ,    

which, according to Lemma 6.7, is equivalent to inequality (6.1).  

The condition  X Y  can be omitted for 2 2  matrices. Indeed, let  

1 1/ 1ˆB A Y A  , 
1/2 1/ 1/2ˆ ( )Y X Y X      are 2 2  matrices.  The eigenvalues of  

1 1/ 1ˆ( )C A A Y A A      and Ŷ  are 

denoted by  1 2( ) ( , )C    and  1 2
ˆ( ) ( , )Y   . Then 

   

1 1/ 1
1 2 1 2

ˆ ˆdet [ ( ) ] detA A Y A A Y          .        (6.9) 

Using Theorem 6.5, we get 

 

1 1/ 1 1 1/ 1

1 2 1 2
ˆ ˆ ˆtr ( ( ) )  tr ( ) tr A A Y A A A A Y A A Y                     .   (6.10) 

Combining (6.9) and (6.10), we obtain 

   

1 1/ 1
2 1 2 1 2 1 2 1 2 2

ˆ ˆdet [ ( ) ] ( ) 1 ( ) 1 det [ ]A A Y A A I Y I                        .■ .   

 

In conclusion, we prove for vector multispace ( )n  the Minkowski’s determinant inequality. 
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6.10 Theorem (Minkowski’s determinant inequality). Let 0   and , ( )X Y n  are positive 

definite n n -matrices. Then 

        

1/ 1/ 1/[det ( )]  [det ] [det ] ,   ( , )
Q

n n nY X Y X Q GL n            (6.11) 

with equality if and only if Y cX  for some 0c  . 

Proof. By Corollary 3.7, we can assume that ( , )Q SL n . Then det ( ) detQ X X   and we obtains 

  

1/ 1/
1/ 1 1 1 1[det ( )]  det [ ( ) ( )]  det [ ( ) ( )]

Q n n
n

Q Q Q Q QY X Y X Y X                           

       

1 1/ 1 1/ 1/ 1/[det ( )]  [det ( )] (det )  (det )n n n n

Q QY X Y X      ,     

where for ordinary addition the well-known (see [11], p. 510) Minkowski inequality is used. For 

the case of equality in (6.11) we have    

1/
1 1 1 1/ 1 1/det [ ( ) ( )]  [det ( )] [det ( )]

n
n n

Q Q Q QY X Y X           . 

Then  

1 1( ) ( )Q QY c X   , i.e. Y cX  for some 0c  .■ . 

 

7  Analog of an indefinite metric on the set of positive definite matrices 
 

By Theorem 3.8 and Proposition 3.4(iv), each addition operation in a multispace ( )n  is 

induced by some positive definite matrix 0A . On the set ( )n n

   of positive definite 

matrices we introduce a ternary operation  { , , }X A Y Z  by the relation 

1
2 ( )A

Z X Y
 

  . 

7.1 Proposition. Operation 

1
2 ( )A

Z X Y
 

   retains its form under all the transformations 

( ),  ( )Q QX X G n     in 
n

 , i.e. 
1 1

2 2( ) ( )

( )  
A A

Q X Y X Y
  



  

    .            (7.1) 

Proof. By Propositions 3.4 (i), 3.6 we have 
1

1 1 2
2 2

( )( ) ( )

( ) ( ) ( )
L

Q AA Q A

Q Q QX Y X Y X Y


 
 

  


  

      ,           

where 1 1/ 1/2 1/ 1/2 1 1

2 2 2( ) ( ) [( ) ] [ ( )] ( )QL
Q A Q A Q Q A Q A A   

                   .■ . 

7.2 Proposition. Let , ( )X Y n  be positive definite matrices and 0  . Then 
1 1

2 2( ) ( )X Y

Y X Y X
   

 .             (7.2) 

Proof. It is sufficient to show that for some ( )Q SG n   the equality 

1 1
2 2( ) ( )

( ) ( )
X Y

Q QY X Y X
  

 

 

  

is satisfied. By Lemma 4.7 there exists a transformation ( )Q SG n   such that 0( )Q nX I  , 

 1( ) diag{ , , }Q nY      . Using Proposition 7.1 we have 
11 1 1

22 2 0 2
( )( ) ( ) ( )

0 0( ) ;      ( )
nX I Y

Q n Q nY X I Y X I
   

   

    

   

    .        

Since for each matrix  0 1diag{ , , } ( , )n GL n      the equality   

0

0 0n nI I  


       is 

satisfied, then 

11 1 1
22 2 0 2

( )( ) ( ) ( )

0 0( )    ( )
nX I Y

Q n n QY X I I Y X Y X
   

   

    

  

       .■ . 

7.3 Definition. Let  X Y  be positive definite matrices of the ordered vector multispace ( )n ,

0 1  . The number  

1
2 ( )

1/( , ) [det ( )]
Y

nX Y Y X






   will be called the interval from point X  to 

point Y . 
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7.4 Theorem (Triangle Reverse Inequality). Let , ,X Y Z  be positive defined matrices of the 

ordered vector multispace ( )n , 0 1  . If    X Y Z   , then 

  ( , ) ( , ) ( , )X Z X Y Y Z                (7.3) 

with equality if and only if 

1 1
2 2( ) ( )

( ) ( )
X X

Z X c Y X
   

   for some 0c  . 

Proof. Using Minkowski’s determinant inequality and Theorem 6.1 we obtain  

 
 

 

   

1 1 1 1 1
2 2 2 2 2

1/ 1/
( ) ( ) ( ) ( ) ( )

1/( , ) det ( ) det [( ) ( )]] (6,11) [det ( )]

n n
X X X X X

nX Z Z X Z Y Y X Y X
        



    

   
         

   
 

    

   

1 1 1
2 2 2

 

( ) ( ) ( )
1/ 1/ 1/ [det ( )] (6,1) [det ( )] [det ( )] ( , ) ( , )

X X Y
n n nZ Y Y X Z Y X Y Y Z

    

 

  

        .   

The equality   ( , ) ( , ) ( , )X Z X Y Y Z       is true if only if  

 

  

   

1 1 1 1 1
2 2 2 2 2

1/
( ) ( ) ( ) ( ) ( )

1/ 1/det [( )] ( )]  [det ( )]  [det ( )]

n
X X X X X

n nY X Z Y Y X Z Y
            

 
   

 
.      

By Theorem 6.10 we have 

1 1
2 2( ) ( )

( ) ( )
X X

Z Y a Y X
   

   for some 0a  . From here we get 
1 1

2 2( ) ( )

( ) ( )
X X

Z X c Y X
   

   for some 0c  .■ . 

7.5 Corollary. Let 0 1,X X  be positive defined matrices of the ordered vector multispace ( )n ,

0 1  . If  0 1X X , then there exists a unique chain of "maximum length" connecting points 

0 1,X X . This maximum chain has a parametrization  
1

2 0( )

0 1( ) (1 ) ,   0 1
X

X s s X s X s
 

       ,         (7.4) 

which is natural in the sense that 0 0 1( , ( )) ( , )X X s s X X     for each 0 1s  . 

Proof. The maximum length is a consequence of  Triangle Reverse Inequality. The interval from 

point 0X  to point ( )X s  is 

  

  

1 1
2 0 2 0( ) ( )

1/ 1/

0 0 1 0 0 1( , ( )) [det ( ( ) )] [det ( ( ))] ( , )
X X

n nX X s X s X s X X s X X
  

 

 

     .■ .   

7.6 Example (Causal Lorentz manifold of dimension 4). Let 0 ,X Y  be positive defined 2 2  

matrices and 0 1  . Each Hermitian 2 2  matrix A  uniquely represented in the form  

ct z x iy
A

x iy ct z

  
  

  
            (7.5) 

with fixed constant 0c  . Hermitian matrix 

1
2 0( )

0

X c t z x i y
Y X

x i y c t z

        
  

      
             

is an element of the tangent space at the point 0X . Here the representation (7.5) for 
1

2 0( )

0

X

Y X
 

 

defines each of numbers , , ,t x y z    . Then  

 

1
2 0( )

2 2 2 2 2

0det ( )
X

Y X c t x y z
 

              (7.6) 

is the invariant of the group (2)SG . This invariant defines a indefinite metric on the manifold of 

positive definite 2 2  matrices at point 0X . The partial order relation  X Y  is a model of 

causal relationship between "events" (7.5). Positive definite matrices model "observed" events. 

Parameter 0 1( , )s X X    (Definition 7.3) can be considered as the free particle's own time. 
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The group (2)SG  of nonlinear transformations of multispace (2)  is a representation of the 

arcwise connected component of the unit of Lorenz group. Group (2)SG , unlike the Lorentz 

group, is defined not by one, but by two parameters 0с   and 0 1  . Note that at  c   and 

each 0 1   the nonlinear transformations of the group (2)SG  are transform into linear 

Galilean transformations.  

 

REFERENCES 

[1]. S. Honmaa,T. Nogawa, Isometries of the geodesic distances for the space of invertible 

positive operators and matrices, Linear Algebra Appl., 444 (2014) 152–164. 

[2]. O. Hatori, L. Molnar, Isometries of the unitary groups and Thompson isometries of the 

spaces of invertible positive elements in C -algebras, J. Math. Anal. Appl. 409 (2014) 158–

167. 

[3]. F. Hiai, D. Petz, Riemannian metrics on positive definite matrices related to means, Linear 

Algebra Appl., 430 (2009) 3105–3130. 

[4]. M. Ito, Y. Seo, T. Yamazaki and M. Yanagida, On a geometric property of positive definite 

matrices cone, Banach J. Math. Anal. 3 (2009), no. 2, 64–76. 

[5]. F. Hansen, An operator inequality, Mathematische Annalen 246 (1980), 249–250. 

[6]. H. Araki, “On an inequality of Lieb and Thirring”, Lett. Math. Phys. 19(1990), pp. 167–170. 

[7]. E. Lieb and W. Thirring, in Studies in Mathematical Physics (Eds. E. Lieb, B. Simon and 

A.Wightman), pp. 301–302, Princeton Press, 1976. 

[8]. B.-Y. Wang and M.-P. Gong, Some eigenvalue inequalities for positive semidefinite matrix 

power products, Linear Algebra Appl., 184(1993), pp. 249-260. 

[9]. B-Y. Wang and F. Zhang, “Trace and Eigenvalue Inequalities for Ordinary and Hadamard 

Products of Positive Semidefinite Hermitian Matrices”, SIAM J. Matrix Anal. Appl.16(1995), 

pp. 1173–1183. 

[10]. A. W. Marshall and I. Olkin, Inequalities: Theory of majorization and its applications, 

Academic Press, San Diego, CA, 1979. 

[11]. R.A. Horn and C.R. Johnson, Matrix Analysis, Cambridge University Press, 1985. 

[12]. R. Bhatia, Matrix Analysis, Springer, 1997. 

[13]. R. Bhatia, Positive Definite Matrices, Princeton University Press, 2007. 

[14]. H. Schaefer, Topological Vector Spaces, New York, London, 1966.  

 


